黃金屋中文-免費小說,文字版,txt下載

 
  黃金屋首頁| 總點擊排行| 周點擊排行| 月點擊排行 | 總搜藏排行 繁體中文版| 收藏黃金屋| 設(shè)為首頁
 
黃金屋中文,黃金書屋 黃金屋中文,黃金書屋
首 頁 手機版 最新章節(jié) 玄幻·奇幻 武俠·仙俠 都市·言情 歷史·軍事 游戲·競技 科幻·靈異 全本·全部 移動版 書架  
  文章查詢:         熱門關(guān)鍵字: 道君 大王饒命  神話紀(jì)元  飛劍問道  重生似水青春  
黃金屋中文 >> 走進不科學(xué)  >>  目錄 >> 第三十二章 無窮量級的萌芽(下)

第三十二章 無窮量級的萌芽(下)

作者:新手釣魚人  分類: 科幻 | 超級科技 | 輕松 | 新手釣魚人 | 走進不科學(xué) | 更多標(biāo)簽...
 
請記住本站域名: 黃金屋

走進不科學(xué) 第三十二章 無窮量級的萌芽(下)

屋子里。

看著一臉懊惱的小牛,徐云的心中卻不由充滿了感慨:

雖然這位的人品實在拉胯,但他的腦子實在是太頂了!

看看他提到的內(nèi)容吧:

微積分就不說了,還提到了法向量的概念、勢能的概念、凈力矩的概念以及小形變的假設(shè)的假設(shè)。

以上這幾個概念有一個算一個,正式被以理論公開,最早都要在1807年之后。

這種150年到200年的思維跨度...敢問誰能做到?

誠然。

胡克提出來的問題其實很簡單,簡單到徐云第一時間想到的解法就接近了二十種,最快捷的方法只要立個非笛卡爾坐標(biāo)系上個共變導(dǎo)數(shù)就能解決。

但別忘了,徐云的知識是通過后世學(xué)習(xí)得到的,那時候的基礎(chǔ)理論已經(jīng)被歸納的相當(dāng)完善了。

就像掌握了可控核聚變的時代,閉著眼睛都能搞出個200cc的發(fā)動機。

但小牛呢?

他屬于在鉆木取火的時代,目光卻看到了內(nèi)燃機的十六烷值計算式那么離譜!

想到這,徐云心中莫名有些想笑:

他曾經(jīng)寫過一本小說,結(jié)果別說牛頓了,連麥克斯韋都被一些評論diss成了‘查了一下,不過一個方程組而已’。

隨后他深吸一口氣,將心思轉(zhuǎn)回了現(xiàn)場:

“牛頓先生,您的這個思路我非常認(rèn)可,但是需要用到的未知數(shù)學(xué)工具有些多,以目前數(shù)學(xué)界的研究進度似乎有點乏力......”

小牛點點頭,大方的承認(rèn)了這一點:

“沒錯,但除此以外,就必須要用到你說的韓立展開了。”

說完小牛繼續(xù)低下頭,飛快的又列出了一行式子:

V(r)=V(re)+V’(re)(r-e)+[V’’(re)/2!](r-re)^2+[V’’’(re)/3!](r-re)^3......

接著小牛在這行公式下劃了一行線,皺眉道:

“如果使用韓立展開的話,彈球在穩(wěn)定位置附近的性質(zhì)又該是什么?這應(yīng)該是一個級數(shù),但劃分起來卻又是一個問題。”

徐云抬頭看了他一眼,說道:

“牛頓先生,如果把穩(wěn)定位置當(dāng)成極小值來計算呢?

我們假設(shè)有一個數(shù)學(xué)上的迫近姿態(tài),也就是......無限趨近于0?”

“無限趨近于0?”

不知為何,小牛的心中忽然冒出了一股有些古怪的情緒,就像是看到莉莎和別人挽著手從臥室里出來了一樣。

不過很快他便將這股情緒拋之腦后,思索了一番道:

“那不就是割圓法的道理嗎?”

割圓法,也就是計算圓周率的早期思路,上過小學(xué)人的應(yīng)該都知道這種方法。

它其實暗示了這樣一種思想:

兩個量雖然有差距,但只要能使這個差距無限縮小,就可以認(rèn)為兩個量最終將會相等。

割圓法在這個時代已經(jīng)算是一種被拋棄的數(shù)學(xué)工具,以徐云隨口就能說出韓立展開的數(shù)學(xué)造詣,理論上不應(yīng)該犯這種思想倒退的錯誤。

面對小牛的疑問,徐云輕輕搖了搖頭,說道:

“牛頓先生,您所說的概念是一個非級數(shù)的變量,但如果更近一步,把它理解成一個級數(shù)變量呢?

甚至更近一步,把它視為超脫實數(shù)框架的...常量呢?”

“趨近于0,級數(shù)變量?常量?”

聽到徐云這番話,小牛整個人頓時愣住了。

無窮小概念,這是一個讓無數(shù)大學(xué)摸魚黨掛在過樹上的問題。

一般來說。

一個人從大學(xué)生到博士,對于無窮小的認(rèn)識要經(jīng)歷三個階段。

第一階段跟第二階段的無窮小都是變量,認(rèn)識到第三階段的時候,所有的無窮小都變成了常量,并且每個無窮小都對應(yīng)著一個常數(shù)。

這些常數(shù)都不在實數(shù)的框架里面,都是由非標(biāo)準(zhǔn)分析模型的公理產(chǎn)生出來的。

第一個階段是上大學(xué)學(xué)習(xí)數(shù)學(xué)分析或者高等數(shù)學(xué)的時候的認(rèn)知,也就是無窮小是要多小有多小。

即正負(fù)無窮小的絕對值,小于任意給定的一個正實數(shù)。

第二階段是學(xué)習(xí)非標(biāo)準(zhǔn)分析的時候,很多微積分公式引入了無窮小量,出現(xiàn)了序之類的概念。

第三階段是認(rèn)識數(shù)學(xué)模型論的時候,這時無窮小量可以變成常量。

一旦對無窮小量認(rèn)識到是常量,就會發(fā)現(xiàn)存在一個更廣闊的數(shù)學(xué)世界,這個數(shù)學(xué)世界比當(dāng)今已知的數(shù)學(xué)世界更廣更深更復(fù)雜,出現(xiàn)了第二類極限思想及其幾何結(jié)構(gòu),第二類極限思想是無窮大空間賦予的,標(biāo)準(zhǔn)分析的極限思想是無窮小空間賦予的。

接著便出現(xiàn)了歐式幾何跟非歐式幾何的相容現(xiàn)象,平行交點坐標(biāo)都可以準(zhǔn)確表示出來。

上述情況又衍生出了很多的非常規(guī)幾何,它們既不是歐式幾何也不是非歐式幾何,是屬于第三種幾何類型(中式幾何)等等。

而第三階段的對無窮小的認(rèn)識有什么實際意義呢?

最直接的說就是,你可以去搞超級計算機了。

目前國內(nèi)對于第三階段研究最深入的便是中科大,潘建偉院士和陸朝陽教授的量子計算機也是這方便的直觀表現(xiàn)之一。

參加過超級計算機算法研發(fā)面試的朋友應(yīng)該都知道,無窮小的三階認(rèn)知是面試的必考題。

此時小牛的理論知識雖然沒有那么完善,但作為微積分——特別是無窮小概念的提出者與奠基人,他隱約能對這些信息作出反饋。

隨后徐云拿過筆,繼續(xù)寫道:

假設(shè)一次項系數(shù)在平衡位置處為零,那么最小只能保留到二次近似,自然就得到了勢能與平衡偏離量二次相關(guān)的形式:

V(r)≈[V’’(re)/2!](r-re)^2

V(r)≈k/2(r-re)^2。

寫到這兒。

徐云便停下了筆,看了眼有些出神的小牛,悄然轉(zhuǎn)身離去。

出門前,他從桌上拿了一小包白糖、一點鹽、小半勺黃油、一口閑置不用的坩堝和兩顆土豆——前幾者都是早晚餐常用的調(diào)料,后兩者則是應(yīng)急用的儲備糧。

然后踮著腳尖,輕輕的掩上了門。

小牛對此毫無表示,他就這樣呆呆的看著徐云的公式,尤其是那個約等號。

過了幾分鐘。

他的喉結(jié)忽然上下滑動了幾下,嘴中發(fā)出了幾道咕嚕咕嚕的聲音。

片刻后,他一個箭步竄回座位,飛快的動起了筆。

三個小時后。

只聽哐的一聲,小牛奪門而出。

嗯,物理意義上的奪門而出——他把門給撞了下來,直接拎在了手上。

沒辦法,房子實在是太老了。

此時正值晚上八點多,因此小牛第一眼便看到了不遠(yuǎn)處的一簇火光,以及火光映照下徐云的臉龐。

小牛快步走到他身邊,激動的道:

“肥魚,我算出來了,那是隨距離線性變化的力,一個彈性力!

它的具體形式?jīng)]有任何要求,換句話說,任何體系在穩(wěn)態(tài)附近,都會表現(xiàn)出彈性行為!

這是一個沒被人發(fā)現(xiàn)的公式,一個穩(wěn)態(tài)下的定理,我敢打賭,胡克他自己都沒推導(dǎo)出來,因為他給的函數(shù)居然有0階項!”

小牛一邊跑一邊朝徐云囔囔,當(dāng)他來到火堆邊上時才發(fā)現(xiàn),徐云此時正低著頭,哼哧哼哧的鼓搗著什么東西:

“肥魚,你這是......?”

“牛頓先生,您來的正好。”

看著面前的小牛,徐云拿起一個餐盤,笑的很燦爛:

“剛出爐的烤土豆,沾上醬料美味極了。”

“醬料?什么醬?”

“番茄醬。”

.......

注:

還記得前面介紹餐具時提到的番茄嗎,誒嘿嘿....


請記住本站域名: 黃金屋

快捷鍵: 上一章("←"或者"P")    下一章("→"或者"N")    回車鍵:返回書頁
上一章  |  走進不科學(xué)目錄  |  下一章
走進不科學(xué) 手機網(wǎng)頁版
瀏覽記錄

字母索引: A |  B |  C |  D |  E |  F |  G |  H |  J |  K |  L |  M |  N |  P |  Q |  R |  S |  T |  W |  X |  Y |  Z


頁面執(zhí)行時間: 0.0563097
主站蜘蛛池模板: 涞源县| 射阳县| 霍城县| 大关县| 英山县| 泽州县| 安多县| 什邡市| 石台县| 旬阳县| 句容市| 凤凰县| 昌黎县| 汶川县| 平顺县| 平武县| 玉树县| 许昌市| 康马县| 八宿县| 志丹县| 桦甸市| 萍乡市| 盐城市| 将乐县| 佳木斯市| 高邮市| 黑龙江省| 铜山县| 永嘉县| 镇宁| 定襄县| 洛南县| 亚东县| 泾阳县| 深州市| 望谟县| 濮阳县| 金寨县| 屏边| 东兴市|